SHRI VIJAY DEVASTHALE Hemetek Techno Industries Ltd.

Two Days Short Course On "Flexible Packaging" From

Indian Plastics Institute Mumbai

Procedure of Testing

Significance

For

Mechanical Properties

Properties

- Density
- Strength
- Resistance to Puncture
- Elongation
- Stiffness
- Friction
- Seal-ability

and other

How Properties are getting affected?

and Composition affect Properties and Process-ability

What is effect on Film ?

Three basic molecular properties

average molecular weight
 molecular weight distribution
 crystallinity or density

affect most of the properties essential for high quality film extrusion

How they affect ?

Effects of LDPE Resin Physical Properties on film's Mechanical Properties

Film Property	As Density Increases
Elongation at rupture	Decreases
Film impact strength (toughness)	Decreases
Flexibility	Remains the same
Gloss	Remains the same
Heat resistance (softening point)	Increases
Impermeability to gases/liquids	Increases

How they affect ?

Effects of LDPE Resin Physical Properties on film's Mechanical Properties

Film Property	As Density Increases
Tensile strength at rupture	Increases
Stress cracking resistance	Decreases
Resistance to film blocking	Increases
Mechanical flex life	Decreases
Clarity	Increases

What we do to improve ?

Additives Used With Polyolefin Film Extrusion Resins

Additives	Primary Benefit
Anti-Static	Static buildup resistance
Slip/Anti-block Agents	Improved film to film slip
UV Stabilizers	Resistance to effects of sunlight
Color	Add color pigment concentrates to film

Properties of Different Materials

Property	SEALABILTY	WVTR	OTR
Material			
Nylon	BAD	BAD	GOOD
EVOH	BAD	GOOD	GOOD
BOPP	NOT GOOD	GOOD	NOT GOOD
CPP	NOT GOOD	GOOD	NOT GOOD
Blown PE	GOOD	GOOD	O.K .
Polyester	BAD	GOOD	GOOD

What decides the selection of Material ? Application

Application	Material
Packaging Materials for Processes Food, Sea Food, Dried Food, Soya & Bean Paste	NY/PE, NY/L-LDPE PET/PE PET/VMPET/COMPOUND FILM OPP/CO-CPP OPP/PE etc
Packaging Materials for Refill Pouch Such as Liquid Shampoo & Rinse, Detergent Powder Packaging Materials for Spout Cap Pouch	PET/L-LDPE NY/L-LDPE PET/PE/L-LDPE PET/NY/L-LDPE etc
Packaging Materials for Soap, Shrink Film & Label Packaging Materials for Agricultural usage	PET/PE PEARL/PAPER/WAX S-OPP etc
Packaging Materials for Retortable Pouch Packaging Materials for Snacks, Instant Food & Noodles	OPP/PE OPP/VMPET/PE PET/PE PET/PE/L-LDPE PET/PE/AL/PE

Selection of Material ?

Film or Laminate Property is important and must suit the Application OR Films / Laminates manufactured which has desired Properties for Application

How to make sure ? that everything is Right as per Requirement

TESTING

Quality Assurance

 Check Quality of Incoming Material
 Check Quality during process
 Check Quality of End product

Aim of Testing

Cost Cutting

 Develop Material to meet the specific requirement
 Sourcing just right Material
 Reduce Waste
 Reduce Rejections

WORTH

THOUSAND

OPINIONS

NEEDS FOR A TEST

INSTRUMENTS

Accurate
Reproducible
Reliable Results
Calibrated

NEEDS FOR A TEST

SOFTWARE

- ✓Easy Setup,
- ✓Quick Testing,
- Customised Reporting & Graphics
- ✓ Upgradeable to Future needs and Software demands

NEEDS FOR A TEST

Data Management ✓ Seamless DATA Transfer ✓ ERP / Network

Traceability of Results

✓ International Standards

✓National Standards

Testing Instruments

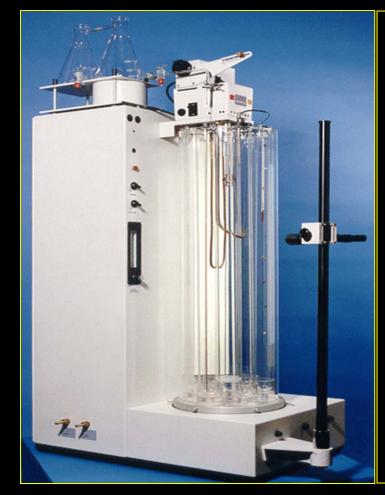
Instruments for various Testing

Standards for Testing

Preferred Features for System

Properties of Material for

Films or Laminates

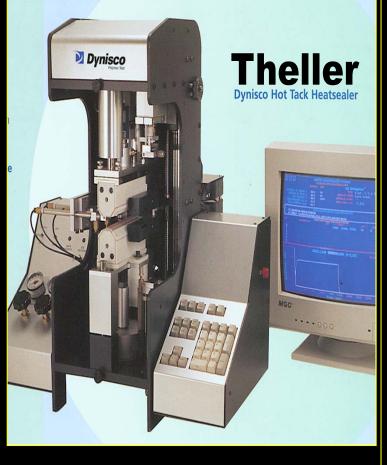

Density

- Melt Flow Index
- Tensile Strength
- Elongation
- Resistance to Puncture
- Coefficient of Friction
- Hot-Tack

- Seal & Peel Strength
- Bond Strength
- Falling Dart Impact
- Tear Strength
- Stiffness
- Water Vapor Permeability
- Gas Permeability

Density ASTM-D792

- Two / three Graduated Columns
- Reference Method
- Two Liquids used to make Density Gradient
- Standard Floats with UKAS Certification
- High accuracy up to 0.0001 g/ml
- Column Sweeping
- Column Filling
- Illumination
- Cathetometer


Melt Flow Index ASTM-D1238 Method A & B

- Fully Microprocessor Based
- Modular Systems
- Digital Flow Rate Timer for Method B
- MFI, MVI, Melt Density Calculations
- Precision Die, Barrel, Piston
- Precise Temperature Control
- Accrediation like ISO, CE..
 - ISO TICK IT accrediated True WINDOWS program

Hot-Tack Index ASTM-F1921

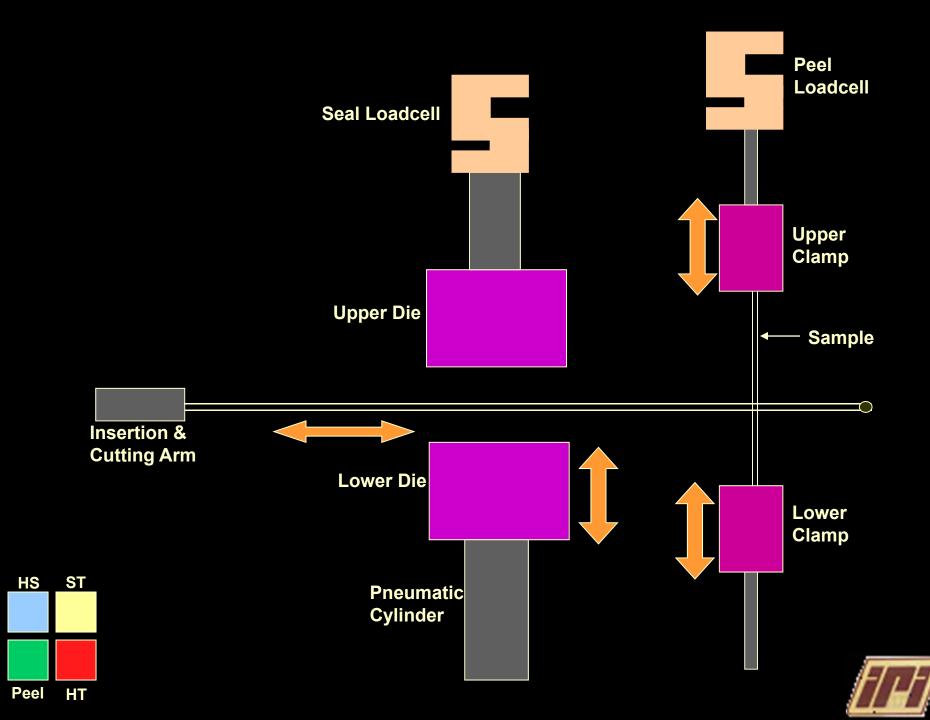
PC controlled Instrument

- Gives Value of Ho-Tack
 - Very Fast and Accurate
 - Force Vs. Cooling time
- Adjustable

- Upper Die Temp
- Lower Die Temp
- Dwell Time
- Sealing Pressure
- Peeling Speed

Hot-Tack Tester

- 1978 Mr. Hut Theller designed and developed first Laboratory Heat Sealer with millisecond control of sealing time
- 1980 First Accurate Test Method and Hardware to Test Heat Sealability as function of interface Temperature
- 1999 First Time ASTM Standard came out ASTM F 1921



Hot-Tack Tester

A Four in One Instrument

 Heat Sealing
 Peel Strength of Heat Seals/Laminates
 Heat Sealing + Ultimate Seal Strength
 Hot Tack

HEAT SEAL

'Behavior of Film or material when sealed'

- Manual Operation
- Wide Strip of up to 5.25" 13.3cm can be Sealed
- Seal Characteristics and Quality is observed

HEAT SEAL

- Useful for Studding Quality of Seal Visual Check
- Various type of Die Serrations and designed Faces and their Sealing Ability
- Can be used to as Sample Preparation for seal Strength and Peel Tests

HEAT SEAL

User Selectable

Upper Die Temperature
Lower Die Temperature
Die Faces & Serrations
Sealing Pressure
Dwell Time

'Strength Required to Separate two sealed Films or Laminates'

Computer Controlled Operation

- 1. Strip is clamped
- 2. Peeled
- 3. Results are Calculated

ULTIMATE SEAL STRENGTH

'When Seal reaches Ambient Temperature it achieves its Ultimate Strength'

Computer Controlled Test Sequence

- 1. Pulled
- 2. Sealed
- 3. Cooled
- 4. Strip is clamped
- 5. Peeled
- 6. Ultimate Seal Strength Calculation

ULTIMATE SEAL STRENGTH

User Selectable

- Temperature of Upper & Lower Dies
- ✓ Dwell Time Sealing Time
- ✓ Sealing Pressure
- ✓ Peeling Speed
- ✓ Cooling Air Velocity & Time

HOT TACK

'Seal Strength Developed immediately after the Dies are opened.'

Computer Controlled Test Sequence

- 1. Strip is clamped
- 2. Pulled
- 3. Sealed
- 4. Peeled under controlled Cooling
- 5. Seal Strength Vs. Cooling Time is plotted.
- 6. Results are Calculated

HOT TACK

User Selectable

- ✓ Dwell Time Sealing Time
- ✓ Sealing Pressure
- Peeling Speed
- ✓ Cooling Air Velocity

Temperature of Upper & Lower Dies

Seal Strength at 250 ms after opening of Dies is known as

Hot Tack Index

In addition Hot Tack Index, it also measures Seal Strength at user defined time

Also gives Seal Strength at ZERO ms by Regression Method

FEATURES HOT TACK TESTER

- Fast Cycle :Total Cycle Time is less than a second + Sealing Time.
- Higher Data Sampling Rate : 800 points per Second.
- ✓ Higher Peeling Speeds : up to 425 cm/sec.
- Minimum Mechanical Lag : first result available at 120ms or so.
- ✓ Auto Calibration before start of Cycle.

FEATURES HOT TACK TESTER

- Excellent Temperature Stability
- ✓ Dwell Time accuracy of +/- 1 ms
- ✓ Controlled Sealing Pressure using Accurate Loadcell
- Closed Loop Peeling Speed control
- Except Cutting Strip and mounting No manual operation.

Temperature Curves

Normally studies are made at different Temperature in Hot Tack and Ultimate Strength Modes

 Seal Strengths Vs. Sealing Temperature

✓ Hot Tack Vs. Sealing Temperature

Water Vapor & Oxygen Permeability Tester

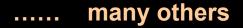
- **Reference Method**
- Computer Controlled
- Graphics and Results
- Adjustable Temperature
- Adjustable RH
- IR-Sensor (as per ASTM)
- Validity as per CFR 21 Chapter-11 is must.
- NIST Traceable STD Samples
 for Calibration

Why do we care about Permeation?

Why Permeability Important ?

Without proper barriers products will fail.

Why Permeability Important ?


- 80% of all food products demand a barrier to gases, flavors and odors.
- 10,000 new food products were introduced in the U.S. last year.

Why Permeability Important ?

Many, many applications

- Food and drug packaging
- Medical devices
- Personal care products
- Electronics and semiconductors
- Paints and coatings
- Chemical Packaging

What is Important ?

Today's Challenge...

Understand, quantify and work with permeation

Why Measuring Permeability is Important ?

Barrier quality varies, BUT

With testing you are sure that barriers <u>WILL</u> do what's promised

What is Permeation ?

- Solution of penetrant into polymer
- Diffusion of penetrant through polymer
- Desorption and evaporation of penetrant from the surface of polymer

What is Permeation ?

P - Permeability Coefficient permeation of penetrant through polymer

D - Diffusion Coefficient movement of penetrant inside polymer

S - Solubility Coefficient

dissolution of permeant into polymer

Permeation of what ?

Permeation rates of

- Water Vapor
- Oxygen
- Carbon Dioxide
- Aromas
- Hydrocarbons
- Volatile Gases

Through barrier materials and packages are *Important*

Factors Affecting Permeation Rate Testing...

- Material thickness
- Relative humidity
- Temperature
- Time
- Barometric Pressure

Basic test methods for permeation

- Gravimetric
- Manometric
- Isostatic
- TransorptionSM

Gravimetric Method

Gravimetric Method (ASTM E-96)

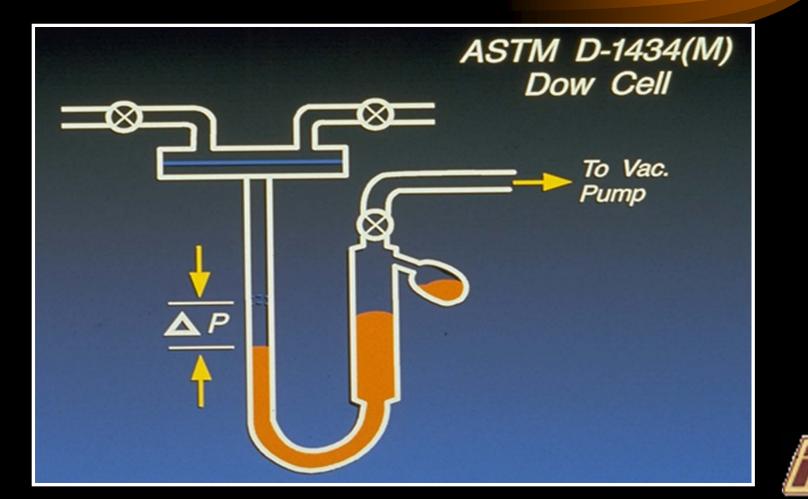
90% RH

history

0% RH

100° F

Test Time 2-10 Days

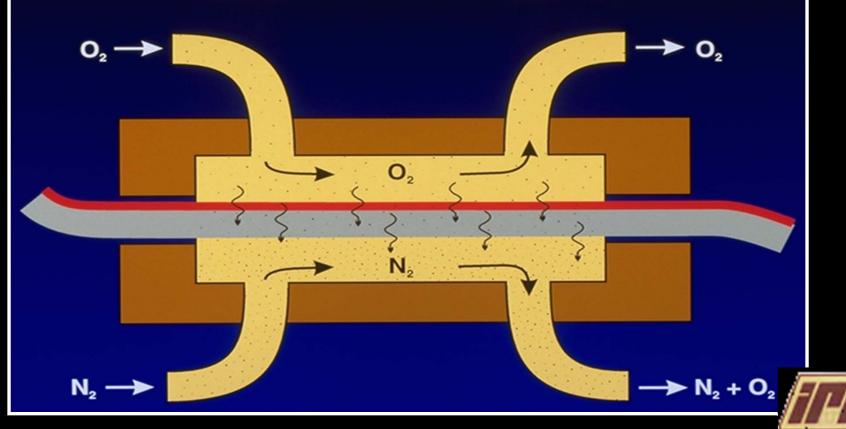

Gravimetric Method

Short Comings...

- Too much operator attention in:
 - Calculations
 - Set up
- Poor precision and repeatability
- Slow answers (2-10 days)

Manometric Method

Manometric Method


Short Comings...

- Too much operator attention in:
 - Calculations
 - Set up
- Poor precision and repeatability
- Could not test at one atmosphere
- Could not test wet
- Could not test packages

Isostatic Permeation Cell

STANDARDS - WVTR

Technique	ASTM	TAPPI	JIS
gravimetric (1941 - 1976)	E-96 dish or cup test	T-464	Z-0208
early instruments (1978 - 1989)	F-372 MOCON IRD F-378 Honeywell	T-523	
current standards (1990 - Current)	F-1249 MOCON Permatran-W	T-557	K-7129

STANDARDS - OTR

ASTM	D-3985	Films	USA
DIN Germany	53380	Films	
JIS	K-7126	Films	Japan
ASTM	F-1307	Packages	USA

Coefficient of Friction -1 ASTM-D1894

- Accurate measurement
- Static & Kinetic Friction
- Suitable for Metal to Film & Film to Film
- Vacuum Film Holding Bed is ideal
- Speed Selection
- Static Force Display
- Possible to Computeri

Falling Dart Impact Test

- Simple Test
- No Automation
- Different Clamping Options like,
 - Vacuum
 - Pneumatic
 - Manual Clamps
- Two Height or Single Height
- Hand Switch for safety

- Digital & Analog Instruments
- Simple Instruments

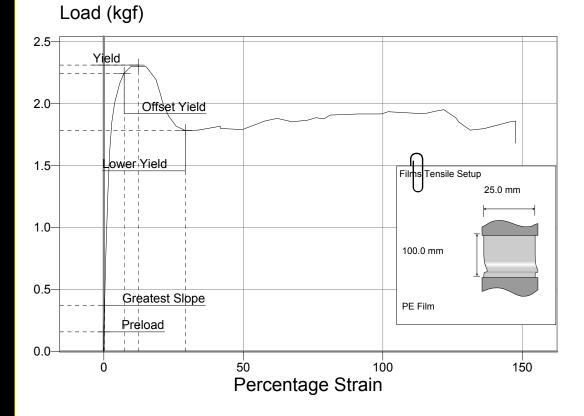
Universal Testing Machine - UTM

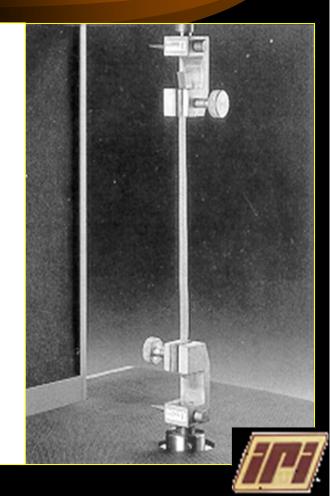
Tensile Strength
Elongation
Resistance to Puncture

Coefficient of Friction
 Seal & Peel Strength
 Bond Strength
 Tear Strength

Tensile Strength, Elongation ASTM-D882

- Fully Microprocessor Based
- Small Foot Print
- Full Function Control Console
- Memory for Test Set Up
- Accurate Force Measuring accuracy
- Precision Ball Screw
- Accurate Extension Measurement
- Precise Speed Control
- Accrediation like ISO, UKAS, CE..
- ISO TICK IT accrediated True WINDOWS program




Tensile Strength, Elongation ASTM-D882

- Tensile Test
- Load @ Peak & Yield
- Load @ Break
- Elongation @ Peak & Yield
- Elongation @Break
- Modulus
- Other Related Results

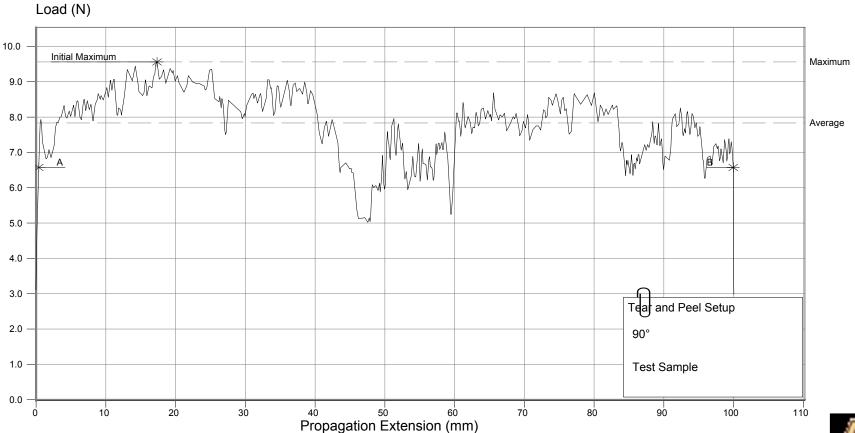
Tensile Strength, Elongation ASTM-D882

Puncture Resistance

- Possibility to Perform on UTM
- Puncture Testing Jig
- Two diameters 50mm or 80mm depending on the standard.
- Speed Selectable as required
- Software to calculate the Results

Coefficient of Friction ASTM-D1894

- Possibility to Perform on UTM
- Friction Testing Jig
 - Accurate and convenient
- Speed Selectable as required
- Software to give results of Static & Kinetic Friction
 - Graphics Presentation possible


Seal Strength

- Possible to perform on UTM
- Normal Tensile Grips can be used
- Standard Test Set up can be used
- All Test parameters adjustable
- Graphs and Results
- Important to have good quality Seal

- Possible to perform on Hot-tack Tester
- Ultimate Seal Strength Mode
- Predefined cooling time
- Graphics & Results available
- Sealing here is very good because its done on same Instruments

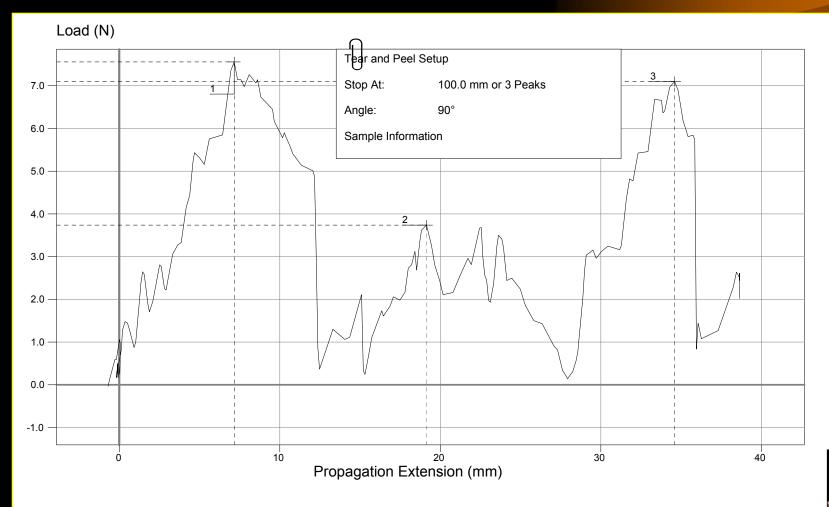
Seal Strength

Heat Sealer

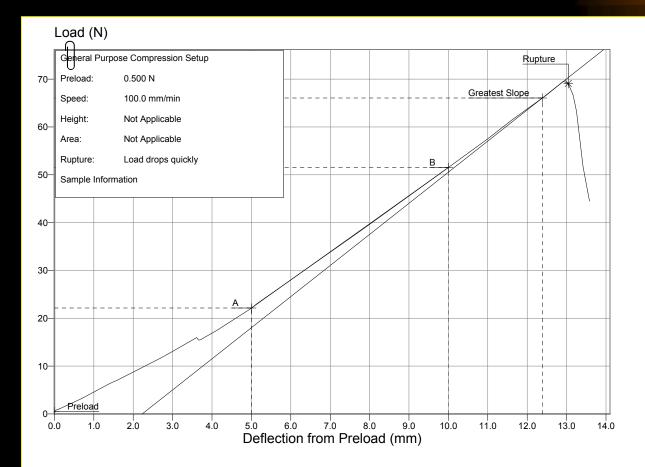
Adjustable

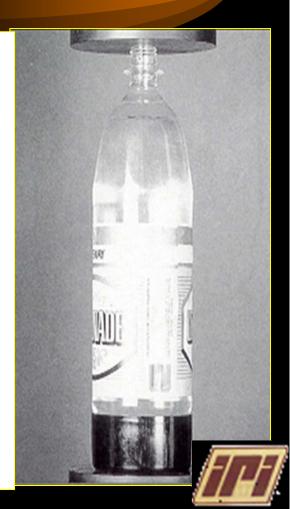
- Upper Die Temp
- Lower Die Temp
- Dwell Time
- Sealing Pressure

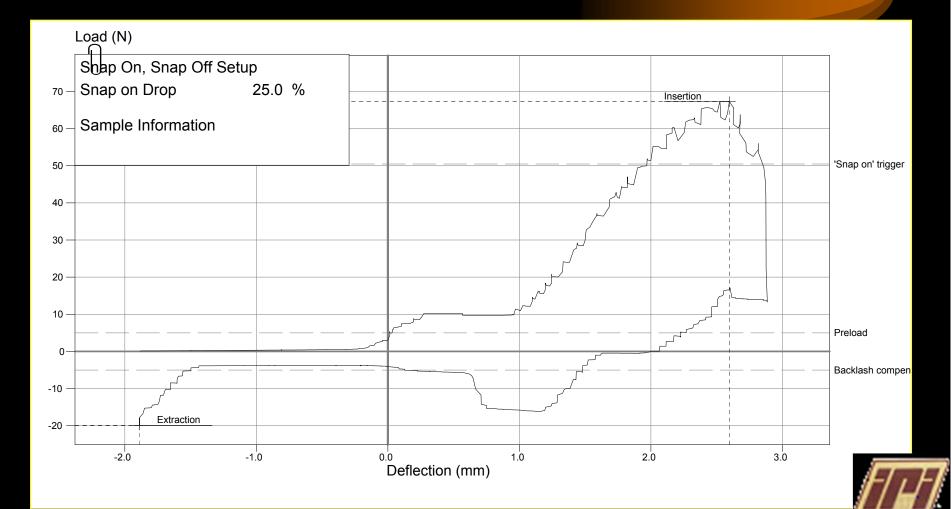
 Digital Display for Temps, Dwell Time, Sealing Pressure.


Peel Strength

- Possible to perform on UTM
- Normal Tensile Grips can be used for 180deg Peel
- Special fixture used for 90 deg Peel
- Standard Test Set up can be used
- All Test parameters adjustable
- Graphs and Results




Peel Strength



Compression Test On Bottles

Snap on snap Off Test

Tear Strength

Tear Test

(Elmendorf Type)

- Elmendorf Tester
- Digital Display
- Simple to use
- Various Loads for different material

Tear Test

(Trouser Type)

- Possible to perform
 on UTM
- Normal Tensile Grips can be used
- Standard Test Set up can be used
- All Test parameters adjustable
- Graphs and Results

Test Set Up

Ready to Use
 Can be Modified
 Create New

Routine Testing

Quick Easy Customised Front End Customised Reporting

Futuristic Requirement √SPC Robotics Control Direct Email of Results Seamless Data Transfer

Cyclic Relaxation Creep Multistage

Flexible approach
 User defined Testing for practically any application

